Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Environ Sci Technol ; 58(13): 5631-5645, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38516811

RESUMO

Seawater reverse osmosis (SWRO) desalination facilities produce freshwater and, at the same time, discharge hypersaline brine that often includes various chemical additives such as antiscalants and coagulants. This dense brine can sink to the sea bottom and creep over the seabed, reaching up to 5 km from the discharge point. Previous reviews have discussed the effects of SWRO desalination brine on various marine ecosystems, yet little attention has been paid to the impacts on benthic habitats. This review comprehensibly discusses the effects of SWRO brine discharge on marine benthic fauna and flora. We review previous studies that indicated a suite of impacts by SWRO brine on benthic organisms, including bacteria, seagrasses, polychaetes, and corals. The effects within the discharge mixing zones range from impaired activities and morphological deformations to changes in the community composition. Recent modeling work demonstrated that brine could spread over the seabed, beyond the mixing zone, for up to several tens of kilometers and impair nutrient fluxes from the sediment to the water column. We also provide a possible perspective on brine's impact on the biogeochemical process within the mixing zone subsurface. Desalination brine can infiltrate into the sandy bottom around the discharge area due to gravity currents. Accumulation of brine and associated chemical additives, such as polyphosphonate-based antiscalants and ferric-based coagulants in the porewater, may change the redox zones and, hence, impact biogeochemical processes in sediments. With the demand for drinking water escalating worldwide, the volumes of brine discharge are predicted to triple during the current century. Future efforts should focus on the development and operation of viable technologies to minimize the volumes of brine discharged into marine environments, along with a change to environmentally friendly additives. However, the application of these technologies should be partly subsidized by governmental stakeholders to safeguard coastal ecosystems around desalination facilities.


Assuntos
Ecossistema , Sais , Purificação da Água , Salinidade , Água do Mar/química
2.
Sci Total Environ ; 920: 170513, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38360314

RESUMO

This study examines the impact of Artificial Light at Night (ALAN) on two coral species, Acropora eurystoma and Pocillopora damicornis, in the Gulf of Aqaba/Eilat Red Sea, assessing their natural isotopic responses to highlight changes in energy and nutrient sourcing due to sensory light pollution. Our findings indicate significant disturbances in photosynthetic processes in Acropora eurystoma, as evidenced by shifts in δ13C values under ALAN, pointing to alterations in carbon distribution or utilization. In Pocillopora damicornis, similar trends were observed, with changes in δ13C and δ15N values suggesting a disruption in its nitrogen cycle and feeding strategies. The study also uncovers species-specific variations in heterotrophic feeding, a crucial factor in coral resilience under environmental stress, contributing to the corals' fixed carbon budget. Light measurements across the Gulf demonstrated a gradient of light pollution which possess the potential of affecting marine biology in the region. ALAN was found to disrupt natural diurnal tentacle behaviors in both coral species, crucial for prey capture and nutrient acquisition, thereby impacting their isotopic composition and health. Echoing previous research, our study underscores the need to consider each species' ecological and physiological contexts when assessing the impacts of anthropogenic changes. The findings offer important insights into the complexities of marine ecosystems under environmental stress and highlight the urgency of developing effective mitigation strategies.


Assuntos
Antozoários , Animais , Nitrogênio , Ecossistema , Isótopos de Carbono , Poluição Luminosa , Carbono , Recifes de Corais
3.
Urolithiasis ; 52(1): 21, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189835

RESUMO

Marine mammals may develop kidney stones, which can be challenging to treat. We describe burst wave lithotripsy (BWL) and ultrasonic propulsion to treat ureteral calculi in a 48-year-old female bottlenose dolphin (Tursiops truncatus) and to reduce renal stone burden in a 23-year-old male harbor seal (Phoca vitulina). BWL and ultrasonic propulsion were delivered transcutaneously in sinusoidal ultrasound bursts to fragment and reposition stones. Targeting and monitoring were performed with real-time imaging integrated within the BWL system. Four dolphin stones were obtained and fragmented ex vivo. The dolphin case received a 10-min and a 20-min BWL treatment conducted approximately 24 h apart to treat two 8-10 mm partially obstructing right mid-ureteral stones, using oral sedation alone. For the harbor seal, while under general anesthesia, retrograde ureteroscopy attempts were unsuccessful because of ureteral tortuosity, and a 30-min BWL treatment was targeted on one 10-mm right kidney stone cluster. All 4 stones fragmented completely to < 2-mm fragments in < 20 min ex vivo. In the dolphin case, the ureteral stones appeared to fragment, spread apart, and move with ultrasonic propulsion. On post-treatment day 1, the ureteral calculi fragments shifted caudally reaching the ureteral orifice on day 9. On day 10, the calculi fragments passed, and the hydroureter resolved. In the harbor seal, the stone cluster was observed to fragment and was not visible on the post-operative computed tomography scan. The seal had gross hematuria and a day of behavior indicating stone passage but overall, an uneventful recovery. BWL and ultrasonic propulsion successfully relieved ureteral stone obstruction in a geriatric dolphin and reduced renal stone burden in a geriatric harbor seal.


Assuntos
Golfinho Nariz-de-Garrafa , Cálculos Renais , Litotripsia , Phoca , Cálculos Ureterais , Animais , Feminino , Masculino , Cálculos Renais/terapia , Cálculos Renais/veterinária , Litotripsia/veterinária , Ultrassom , Cálculos Ureterais/terapia , Cálculos Ureterais/veterinária
4.
Nat Commun ; 14(1): 2511, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188683

RESUMO

Coral broadcast spawning events - in which gametes are released on certain nights predictably in relation to lunar cycles - are critical to the maintenance and recovery of coral reefs following mass mortality. Artificial light at night (ALAN) from coastal and offshore developments threatens coral reef health by masking natural light:dark cycles that synchronize broadcast spawning. Using a recently published atlas of underwater light pollution, we analyze a global dataset of 2135 spawning observations from the 21st century. For the majority of genera, corals exposed to light pollution are spawning between one and three days closer to the full moon compared to those on unlit reefs. ALAN possibly advances the trigger for spawning by creating a perceived period of minimum illuminance between sunset and moonrise on nights following the full moon. Advancing the timing of mass spawning could decrease the probability of gamete fertilization and survival, with clear implications for ecological processes involved in the resilience of reef systems.


Assuntos
Antozoários , Animais , Poluição Luminosa , Recifes de Corais , Fotoperíodo , Lua , Luz
5.
Sci Total Environ ; 856(Pt 2): 159051, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181819

RESUMO

Quantifying coral reef biodiversity is challenging for cryptofauna and organisms in early life stages. We demonstrate the utility of eDNA metabarcoding as a tool for comprehensively evaluating invertebrate communities on complex 3D structures for reef reformation, and the role these structures play in provisioning habitat for organisms. 3D design and printing were used to create 18 complex tiles, which were used to form artificial reef structures. eDNA was collected from scraping tile surfaces for organismal biomass and from seawater samples around the artificial reefs in the Gulf of Eilat/Aqaba, Red Sea. Metabarcoding targeted the mitochondrial COI gene with specific primers for marine biodiversity. We provide the first eDNA biodiversity baseline for the Gulf of Eilat/Aqaba, capturing extensive information on species abundance, richness, and diversity. Tile tops had higher phylogenetic diversity and richness, despite a higher abundance of organisms on tile bottoms, highlighting the detection of cryptic organisms with eDNA. We recommend eDNA metabarcoding for reef restoration initiatives, especially for complex marine structures, to improve success and evaluation of biodiversity.


Assuntos
Recifes de Corais , DNA Ambiental , Filogenia , Biodiversidade , Ecossistema , Monitoramento Ambiental
6.
Water Res ; 229: 119411, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463678

RESUMO

Many coral reefs are found in arid and semi-arid regions that often face severe water scarcity and depend on seawater desalination for freshwater supply. Alongside freshwater production, desalination plants discharge brine waste into the sea. Brine includes various chemicals (e.g., antiscalants) that may harm the coastal environment. Although widely used, little is known about the ecotoxicological effects of antiscalants (AS) on hard corals. This study compared the impacts of polyphosphonate-based and polymer-based ASs on the coral Montipora capricornis. After two weeks of exposure, we determined the effects of AS on coral physiology, symbiotic microalgae, and associated bacteria, using various analytical approaches such as optical coherence tomography, pulse amplitude modulated fluorometry, and oxidative stress biomarkers. Both ASs reduced polyp activity (∼25%) and caused tissue damage (30% and 41% for polymer and polyphosphonate based AS, respectively). In addition, exposure to polyphosphonate-based AS decreased the abundance of endosymbiotic algae (39%) and upregulated the antioxidant capacity of the animal host (45%). The microalgal symbionts were under oxidative stress, with increased levels of antioxidant capacity and oxidative damage (a 2-fold increase compared to the control). Interestingly, exposure to AS enhanced the numbers of associated bacteria (∼40% compared to the control seawater) regardless of the AS type. Our results introduce new insights into the effects of brine on the physiology of hard corals, highlighting that choosing AS type must be examined according to the receiving ecosystem.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Antioxidantes , Bactérias , Recifes de Corais , Ecossistema
7.
Sci Adv ; 8(37): eabo6467, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112690

RESUMO

Studying chronobiology in reef-building corals is challenging due to the tightly coupled symbiosis with their photosynthetic algae, Symbiodiniaceae. Although symbiosis requires metabolic synchronization and coordination of cellular processes in the holobiont, the cross-talk between the host and symbiont's clocks is still puzzling. Here, we use the mesophotic coral Euphyllia paradivisa to examine temporal gene expression patterns in symbiotic and aposymbiotic morphs exposed to natural light/dark cycles and constant darkness. Our comparative transcriptomic analyses revealed circadian and circatidal cycles of gene expression with a predominant diel pattern in both coral morphs. We found a substantial number of transcripts consistently rhythmic under both light conditions, including genes likely involved in the cnidarians' circadian clock, thus indicating that an endogenous clock, which can oscillate independently from the Symbiodiniaceae clock, exists in E. paradivisa. The analysis further manifests the remarkable impacts of symbiosis on transcriptional rhythms and implies that the algae's presence influences the host's biorhythm.

8.
Sci Total Environ ; 844: 157180, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35809731

RESUMO

Climate change is degrading coral reefs around the world. Mass coral bleaching events have become more frequent in recent decades, leading to dramatic declines in coral cover. Mesophotic coral ecosystems (30-150 m depth) comprise an estimated 50-80 % of global coral reef area. The potential for these to act as refuges from climate change is unresolved. Here, we report three mesophotic-specific coral bleaching events in the northern Red Sea over the course of eight years. Over the last decade, faster temperature increases at mesophotic depths resulted in ~50 % decline in coral populations, while the adjacent shallow coral reefs remained intact. Further, community structure shifted from hard coral dominated to turf algae dominated throughout these recurrent bleaching events. Our results do not falsify the notion of the northern Red Sea as a thermal refuge for shallow coral reefs, but question the capacity of mesophotic ecosystems to act as a universal tropical refuge.


Assuntos
Antozoários , Ecossistema , Animais , Branqueamento de Corais , Recifes de Corais , Água
9.
Glob Chang Biol ; 28(18): 5346-5367, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35583661

RESUMO

The globally widespread adoption of Artificial Light at Night (ALAN) began in the mid-20th century. Yet, it is only in the last decade that a renewed research focus has emerged into its impacts on ecological and biological processes in the marine environment that are guided by natural intensities, moon phase, natural light and dark cycles and daily light spectra alterations. The field has diversified rapidly from one restricted to impacts on a handful of vertebrates, to one in which impacts have been quantified across a broad array of marine and coastal habitats and species. Here, we review the current understanding of ALAN impacts in diverse marine ecosystems. The review presents the current state of knowledge across key marine and coastal ecosystems (sandy and rocky shores, coral reefs and pelagic) and taxa (birds and sea turtles), introducing how ALAN can mask seabird and sea turtle navigation, cause changes in animals predation patterns and failure of coral spawning synchronization, as well as inhibition of zooplankton Diel Vertical Migration. Mitigation measures are recommended, however, while strategies for mitigation were easily identified, barriers to implementation are poorly understood. Finally, we point out knowledge gaps that if addressed would aid in the prediction and mitigation of ALAN impacts in the marine realm.


Assuntos
Antozoários , Ecossistema , Animais , Recifes de Corais , Luz , Poluição Luminosa
10.
Sci Total Environ ; 830: 154749, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339542

RESUMO

The rapid decline of vulnerable coral reefs has increased the necessity of exploring interdisciplinary methods for reef restoration. Examining how to upgrade these tools may uncover options to better support or increase biodiversity of coral reefs. As many of the issues facing reef restoration today deal with the scalability and effectiveness of restoration efforts, there is an urgency to invest in technology that can help reach ecosystem-scale. Here, we provide an overview on the evolution to current state of artificial reefs as a reef reformation tool and discuss a blueprint with which to guide the next generation of biomimetic artificial habitats for ecosystem support. Currently, existing artificial structures have difficulty replicating the 3D complexity of coral habitats and scaling them to larger areas can be problematic in terms of production and design. We introduce a novel customizable 3D interface for producing scalable, biomimetic artificial structures, utilizing real data collected from coral ecosystems. This interface employs 3D technologies, 3D imaging and 3D printing, to extract core reef characteristics, which can be translated and digitized into a 3D printed artificial reef. The advantages of 3D printing lie in providing customized tools by which to integrate the vital details of natural reefs, such as rugosity and complexity, into a sustainable manufacturing process. This methodology can offer economic solutions for developing both small and large-scale biomimetic structures for a variety of restoration situations, that closely resemble the coral reefs they intend to support.


Assuntos
Antozoários , Recifes de Corais , Animais , Biodiversidade , Biomimética , Ecossistema
11.
Adv Sci (Weinh) ; 9(14): e2103241, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289122

RESUMO

Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.


Assuntos
Vacinas contra Influenza , Influenza Humana , Estruturas Linfoides Terciárias , Animais , Anticorpos Antivirais , Humanos , Influenza Humana/prevenção & controle , Dispositivos Lab-On-A-Chip , Estações do Ano , Vacinação
12.
Glob Chang Biol ; 28(10): 3349-3364, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218086

RESUMO

Coral reefs are in global decline due to climate change and anthropogenic influences (Hughes et al., Conservation Biology, 27: 261-269, 2013). Near coastal cities or other densely populated areas, coral reefs face a range of additional challenges. While considerable progress has been made in understanding coral responses to acute individual stressors (Dominoni et al., Nature Ecology & Evolution, 4: 502-511, 2020), the impacts of chronic exposure to varying combinations of sensory pollutants are largely unknown. To investigate the impacts of urban proximity on corals, we conducted a year-long in-natura study-incorporating sampling at diel, monthly, and seasonal time points-in which we compared corals from an urban area to corals from a proximal non-urban area. Here we reveal that despite appearing relatively healthy, natural biorhythms and environmental sensory systems were extensively disturbed in corals from the urban environment. Transcriptomic data indicated poor symbiont performance, disturbance to gametogenic cycles, and loss or shifted seasonality of vital biological processes. Altered seasonality patterns were also observed in the microbiomes of the urban coral population, signifying the impact of urbanization on the holobiont, rather than the coral host alone. These results should raise alarm regarding the largely unknown long-term impacts of sensory pollution on the resilience and survival of coral reefs close to coastal communities.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/fisiologia , Recifes de Corais , Periodicidade , Urbanização
13.
Front Immunol ; 13: 1016097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618389

RESUMO

Climate change induced heat stress has increased coral bleaching events worldwide. Differentially regulated immune genes are one of the primary responses to heat stress suggesting that immune activation is critical. However, the cellular immune mechanisms of coral bleaching is currently unknown, and it is still not known if the immune response documented during heat stress is a consequence of bleaching or is directly caused by the heat stress itself. To address this question, we have used two model system sea anemones (Order: Actiniaria): Exaiptasia diaphana and Nematostella vectensis. E. diaphana is an established sea anemone model for algal symbiont interaction, while N. vectensis is an established sea anemone model that lacks the algal symbiont. Here, we examined the effect of increased temperature on phagocytic activity, as an indication of immune function. Our data shows that immune cell activity increases during heat stress, while small molecule pinocytosis remains unaffected. We observed an increase in cellular production of reactive oxygen species with increasing temperatures. We also found that the cellular immune activity was not affected by the presence of the Symbiodiniaceae. Our results suggest that the immune activity observed in heat-stress induced bleaching in corals is a fundamental and basic response independent of the bleaching effect. These results establish a foundation for improving our understanding of hexacorallian immune cell biology, and its potential role in coral bleaching.


Assuntos
Antozoários , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/fisiologia , Resposta ao Choque Térmico , Temperatura , Espécies Reativas de Oxigênio
14.
PLOS Digit Health ; 1(6): e0000061, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36812552

RESUMO

The Earable device is a behind-the-ear wearable originally developed to measure cognitive function. Since Earable measures electroencephalography (EEG), electromyography (EMG), and electrooculography (EOG), it may also have the potential to objectively quantify facial muscle and eye movement activities relevant in the assessment of neuromuscular disorders. As an initial step to developing a digital assessment in neuromuscular disorders, a pilot study was conducted to determine whether the Earable device could be utilized to objectively measure facial muscle and eye movements intended to be representative of Performance Outcome Assessments, (PerfOs) with tasks designed to model clinical PerfOs, referred to as mock-PerfO activities. The specific aims of this study were: To determine whether the Earable raw EMG, EOG, and EEG signals could be processed to extract features describing these waveforms; To determine Earable feature data quality, test re-test reliability, and statistical properties; To determine whether features derived from Earable could be used to determine the difference between various facial muscle and eye movement activities; and, To determine what features and feature types are important for mock-PerfO activity level classification. A total of N = 10 healthy volunteers participated in the study. Each study participant performed 16 mock-PerfOs activities, including talking, chewing, swallowing, eye closure, gazing in different directions, puffing cheeks, chewing an apple, and making various facial expressions. Each activity was repeated four times in the morning and four times at night. A total of 161 summary features were extracted from the EEG, EMG, and EOG bio-sensor data. Feature vectors were used as input to machine learning models to classify the mock-PerfO activities, and model performance was evaluated on a held-out test set. Additionally, a convolutional neural network (CNN) was used to classify low-level representations of the raw bio-sensor data for each task, and model performance was correspondingly evaluated and compared directly to feature classification performance. The model's prediction accuracy on the Earable device's classification ability was quantitatively assessed. Study results indicate that Earable can potentially quantify different aspects of facial and eye movements and may be used to differentiate mock-PerfO activities. Specially, Earable was found to differentiate talking, chewing, and swallowing tasks from other tasks with observed F1 scores >0.9. While EMG features contribute to classification accuracy for all tasks, EOG features are important for classifying gaze tasks. Finally, we found that analysis with summary features outperformed a CNN for activity classification. We believe Earable may be used to measure cranial muscle activity relevant for neuromuscular disorder assessment. Classification performance of mock-PerfO activities with summary features enables a strategy for detecting disease-specific signals relative to controls, as well as the monitoring of intra-subject treatment responses. Further testing is needed to evaluate the Earable device in clinical populations and clinical development settings.

15.
Mol Ecol ; 31(3): 884-901, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34738686

RESUMO

Urbanized coral reefs are often chronically affected by sedimentation and reduced light levels, yet many species of corals appear to be able to thrive under these highly disturbed conditions. Recently, these marginal ecosystems have gained attention as potential climate change refugia due to the shading effect of suspended sediment, as well as potential reservoirs for stress-tolerant species. However, little research exists on the impact of sedimentation on coral physiology, particularly at the molecular level. Here, we investigated the transcriptomic response to sediment stress in corals of the family Merulinidae from a chronically turbid reef (one genet each of Goniastrea pectinata and Mycedium elephantotus from Singapore) and a clear-water reef (multiple genets of G. pectinata from the Gulf of Aqaba/Eilat). In two ex-situ experiments, we exposed corals to either natural sediment or artificial sediment enriched with organic matter and used whole-transcriptome sequencing (RNA sequencing) to quantify gene expression. Analysis revealed a shared basis for the coral transcriptomic response to sediment stress, which involves the expression of genes broadly related to energy metabolism and immune response. In particular, sediment exposure induced upregulation of anaerobic glycolysis and glyoxylate bypass enzymes, as well as genes involved in hydrogen sulphide metabolism and in pathogen pattern recognition. Our results point towards hypoxia as a probable driver of this transcriptomic response, providing a molecular basis to previous work that identified hypoxia as a primary cause of tissue necrosis in sediment-stressed corals. Potential metabolic and immunity trade-offs of corals living under chronic sedimentation should be considered in future studies on the ecology and conservation of turbid reefs.


Assuntos
Antozoários , Animais , Antozoários/genética , Mudança Climática , Recifes de Corais , Ecossistema , Refúgio de Vida Selvagem
16.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299075

RESUMO

Organisms' survival is associated with the ability to respond to natural or anthropogenic environmental stressors. Frequently, these responses involve changes in gene regulation and expression, consequently altering physiology, development, or behavior. Here, we present modifications in response to heat exposure that mimics extreme summertime field conditions of lab-cultured and field-conditioned Nematostella vectensis. Using ATAC-seq and RNA-seq data, we found that field-conditioned animals had a more concentrated reaction to short-term thermal stress, expressed as enrichment of the DNA repair mechanism pathway. By contrast, lab animals had a more diffuse reaction that involved a larger number of differentially expressed genes and enriched pathways, including amino acid metabolism. Our results demonstrate that pre-conditioning affects the ability to respond efficiently to heat exposure in terms of both chromatin accessibility and gene expression and reinforces the importance of experimentally addressing ecological questions in the field.


Assuntos
Cromatina/fisiologia , Regulação da Expressão Gênica , Temperatura Alta , Laboratórios/estatística & dados numéricos , Anêmonas-do-Mar/genética , Transcriptoma , Animais , Monitoramento Ambiental , Perfilação da Expressão Gênica , Anêmonas-do-Mar/crescimento & desenvolvimento
17.
Front Physiol ; 12: 695083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234696

RESUMO

Artificial Light at Night, ALAN, is a major emerging issue in biodiversity conservation, which can negatively impact both terrestrial and marine environments. Therefore, it should be taken into serious consideration in strategic planning for urban development. While the lion's share of research has dealt with terrestrial organisms, only a handful of studies have focused on the marine milieu. To determine if ALAN impacts the coral reef symbiotic algae, that are fundamental for sustainable coral reefs, we conducted a short experiment over a period of one-month by illuminating isolated Symbiodiniaceae cell cultures from the genera Cladocopium (formerly Clade C) and Durusdinium (formerly Clade D) with LED light. Cell cultures were exposed nightly to ALAN levels of 0.15 µmol quanta m-2 s-1 (∼4-5 lux) with three light spectra: blue, yellow and white. Our findings showed that even in very low levels of light at night, the photo-physiology of the algae's Electron Transport Rate (ETR), Non-Photochemical Quenching, (NPQ), total chlorophyll, and meiotic index presented significantly lower values under ALAN, primarily, but not exclusively, in Cladocopium cell cultures. The findings also showed that diverse Symbiodiniaceae types have different photo-physiology and photosynthesis performances under ALAN. We believe that our results sound an alarm for the probable detrimental effects of an increasing sensory pollutant, ALAN, on the eco-physiology of symbiotic corals. The results of this study point to the potential effects of ALAN on other organisms in marine ecosystem such as fish, zooplankton, and phytoplankton in which their biorhythms is entrained by natural light and dark cycles.

18.
Sci Rep ; 11(1): 15451, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326433

RESUMO

In cnidarians, long-term ecological success relies on sexual reproduction. The sea anemone Nematostella vectensis, which has emerged as an important model organism for developmental studies, can be induced for spawning by temperature elevation and light exposure. To uncover molecular mechanisms and pathways underlying spawning, we characterized the transcriptome of Nematostella females before and during spawning induction. We identified an array of processes involving numerous receptors, circadian clock components, cytoskeleton, and extracellular transcripts that are upregulated upon spawning induction. Concurrently, processes related to the cell cycle, fatty acid metabolism, and other housekeeping functions are downregulated. Real-time qPCR revealed that light exposure has a minor effect on expression levels of most examined transcripts, implying that temperature change is a stronger inducer for spawning in Nematostella. Our findings reveal the potential mechanisms that may enable the mesenteries to serve as a gonad-like tissue for the developing oocytes and expand our understanding of sexual reproduction in cnidarians.


Assuntos
Regulação da Expressão Gênica , Anêmonas-do-Mar/metabolismo , Animais , Relógios Circadianos , Citoesqueleto/metabolismo , Ecologia , Evolução Molecular , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Luz , Biologia Molecular , Oócitos/citologia , Fotoperíodo , Reação em Cadeia da Polimerase em Tempo Real , Reprodução , Temperatura , Transcriptoma
19.
PeerJ ; 9: e11710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285832

RESUMO

Barnacles of the genus Chthamalus are commonly encountered rocky intertidal shores. The phylogeography of the different species in the Western Indian Ocean is unclear. Using morphological characteristics as well as the molecular markers mitochondrial cytochrome oxygenase subunit I (COI) and the nuclear sodium-potassium ATPase (NaKA), we identified four clades representing four species in the Western Indian Ocean and its adjacent seas. Among these species, a newly identified species, Chthamalus barilani, which was found in Madagascar, Zanzibar and Tanzania. Chthamalus from the coasts of Tanzania and Zanzibar is identified morphologically as C. malayensis, and clusters with C. malayensis from the Western Pacific and the Indo Malayan regions. C. malayensis is regarded as a group of four genetically differentiated clades representing four cryptic species. The newly identified African clade is genetically different from these clades and the pairwise distances between them justify the conclusion that it is an additional cryptic species of C. malayensis. This type of genetic analyses offers an advantage over morphological characterization and allowed us to reveal that another species, C. barnesi, which is known from the Red Sea, is also distributed in the Arabian Sea and the Persian Gulf. We could also confirm the presence of the South African species C. dentatus in the Mozambique channel. This represents the Northeastern limit of C. dentatus, which is usually distributed along the coast of southern Africa up to the Islands of Cape Verde in West Africa. Altogether, based on a combination of morphology and genetics, we distinct between four clusters of Chthamalus, and designate their distribution in the West Indian Ocean. These distinctions do not agree with the traditional four groups reported previously based merely on morphological data. Furthermore, these findings underline the importance of a combining morphological and genetics tools for constructing barnacle taxonomy.

20.
J Mol Med (Berl) ; 99(5): 663-671, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33398468

RESUMO

Mesenchymal stem cells (MSCs) are promising candidates for the development of cell-based drug delivery systems for autoimmune inflammatory diseases, such as multiple sclerosis (MS). Here, we investigated the effect of Ro-31-8425, an ATP-competitive kinase inhibitor, on the therapeutic properties of MSCs. Upon a simple pretreatment procedure, MSCs spontaneously took up and then gradually released significant amounts of Ro-31-8425. Ro-31-8425 (free or released by MSCs) suppressed the proliferation of CD4+ T cells in vitro following polyclonal and antigen-specific stimulation. Systemic administration of Ro-31-8425-loaded MSCs ameliorated the clinical course of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, displaying a stronger suppressive effect on EAE than control MSCs or free Ro-31-8425. Ro-31-8425-MSC administration resulted in sustained levels of Ro-31-8425 in the serum of EAE mice, modulating immune cell trafficking and the autoimmune response during EAE. Collectively, these results identify MSC-based drug delivery as a potential therapeutic strategy for the treatment of autoimmune diseases. KEY MESSAGES: MSCs can spontaneously take up the ATP-competitive kinase inhibitor Ro-31-8425. Ro-31-8425-loaded MSCs gradually release Ro-31-8425 and exhibit sustained suppression of T cells. Ro-31-8425-loaded MSCs have more sustained serum levels of Ro-31-8425 than free Ro-31-8425. Ro-31-8425-loaded MSCs are more effective than MSCs and free Ro-31-8425 for EAE therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Indóis/administração & dosagem , Maleimidas/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Transplante Heterólogo/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/imunologia , Inibidores Enzimáticos/sangue , Feminino , Humanos , Imunidade/efeitos dos fármacos , Indóis/sangue , Maleimidas/sangue , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Distribuição Tecidual , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...